An Optimal Integrated Control Scheme for Permanent Magnet Synchronous Generator-Based Wind Turbines under Asymmetrical Grid Fault Conditions
نویسندگان
چکیده
Abstract: In recent years, the increasing penetration level of wind energy into power systems has brought new issues and challenges. One of the main concerns is the issue of dynamic response capability during outer disturbance conditions, especially the fault-tolerance capability during asymmetrical faults. In order to improve the fault-tolerance and dynamic response capability under asymmetrical grid fault conditions, an optimal integrated control scheme for the grid-side voltage-source converter (VSC) of direct-driven permanent magnet synchronous generator (PMSG)-based wind turbine systems is proposed in this paper. The optimal control strategy includes a main controller and an additional controller. In the main controller, a double-loop controller based on differential flatness-based theory is designed for grid-side VSC. Two parts are involved in the design process of the flatness-based controller: the reference trajectories generation of flatness output and the implementation of the controller. In the additional control aspect, an auxiliary second harmonic compensation control loop based on an improved calculation method for grid-side instantaneous transmission power is designed by the quasi proportional resonant (Quasi-PR) control principle, which is able to simultaneously restrain the second harmonic components in active power and reactive power injected into the grid without the respective calculation for current control references. Moreover, to reduce the DC-link overvoltage during grid faults, the mathematical model of DC-link voltage is analyzed and a feedforward modified control factor is added to the traditional DC voltage control loop in grid-side VSC. The effectiveness of the optimal control scheme is verified in PSCAD/EMTDC simulation software.
منابع مشابه
Efficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملDynamic Analysis of Grid Connected Wind Turbine with a Permanent Magnet Synchronous Generator during Fault Conditions
The use of wind turbines is increasing at very high rates in many countries around the world. Studies to evaluate the impact of connecting these new generation units to the existing power systems must be done. This paper proposes a wind energy conversion system for a grid connected permanent magnet synchronous generator (PMSG) and power electronic converter system. The model includes a PMSG mod...
متن کاملFixed-Speed and Variable Speed (PMSG) Induction Generators Based Wind Farms with Statcom Control under Asymmetrical Grid Faults
Recently, renewable wind energy is enjoying a rapid growth globally to become an important green electricity source to replace polluting and exhausting fossil fuel. The stability of fixed-speed induction generator (FSIG)-based wind turbines can be improved by a StatCom, which is well known and documented in the literature for balanced grid voltage dips and comparing with the variable speed perm...
متن کاملA New DPC-SVM for Matrix Converter Used in Wind Energy Conversion System Based on Multiphase Permanent Magnet Synchronous Generator
This paper proposes a novel wind energy conversion system based on a Five-phase Permanent Magnetic Synchronous Generator (5-PMSG) and a Five to three Matrix Converter (5-3MC). The low cost and volume and also eliminating grid side converter controller are attractive aspects of the proposed topology compared to the conventional with back-to-back converters. The control of active and reactive pow...
متن کاملFault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines
Abstract: Currently, the electric power production by wind energy conversion systems (WECSs) has increased significantly. Consequently, wind turbine (WT) generators are requested to fulfill the grid code (GC) requirements stated by network operators. In case of grid faults/voltage dips, a mismatch between the generated active power from the wind generator and the active power delivered to the g...
متن کامل